Abstract

Base damage flanking a radiation-induced DNA double-strand break (DSB) may contribute to DSB complexity and affect break repair. However, to date, an isolated radiation-induced DSB has not been assessed for such structures at the molecular level. In this study, an authentic site-specific radiation-induced DSB was produced in plasmid DNA by triplex forming oligonucleotide-targeted (125)I decay. A restriction fragment terminated by the DSB was isolated and probed for base damage with the E. coli DNA repair enzymes endonuclease III and formamidopyrimidine-DNA glycosylase. Our results demonstrate base damage clustering within 8 bases of the (125)I-targeted base in the DNA duplex. An increased yield of base damage (purine > pyrimidine) was observed for DSBs formed by irradiation in the absence of DMSO. An internal control fragment 1354 bp upstream from the targeted base was insensitive to enzymatic probing, indicating that the damage detected proximal to the DSB was produced by the (125)I decay that formed the DSB. Gas chromatography-mass spectrometry identified three types of damaged bases in the approximately 32-bp region proximal to the DSB. These base lesions were 8-hydroxyguanine, 8-hydroxyadenine and 5-hydroxycytosine. Finally, evidence is presented for base damage >24 bp upstream from the (125)I-decay site that may form via a charge migration mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.