Abstract

The seed oil derived from the tung (Aleurites fordii Hemsl.) tree contains approximately 80% alpha-eleostearic acid (18:3delta(9cis,11trans,13trans)), an unusual conjugated fatty acid that imparts industrially important drying qualities to tung oil. Here, we describe the cloning and functional analysis of two closely related Delta(12) oleate desaturase-like enzymes that constitute consecutive steps in the biosynthetic pathway of eleostearic acid. Polymerase chain reaction screening of a tung seed cDNA library using degenerate oligonucleotide primers resulted in identification of two desaturases, FAD2 and FADX, that shared 73% amino acid identity. Both enzymes were localized to the endoplasmic reticulum of tobacco (Nicotiana tabacum cv Bright-Yellow 2) cells, and reverse transcriptase-polymerase chain reaction revealed that FADX was expressed exclusively within developing tung seeds. Expression of the cDNAs encoding these enzymes in yeast (Saccharomyces cerevisiae) revealed that FAD2 converted oleic acid (18:1delta(9cis)) into linoleic acid (18:2delta(9cis,12cis)) and that FADX converted linoleic acid into alpha-eleostearic acid. Additional characterization revealed that FADX exhibited remarkable enzymatic plasticity, capable of generating a variety of alternative conjugated and delta(12)-desaturated fatty acid products in yeast cells cultured in the presence of exogenously supplied fatty acid substrates. Unlike other desaturases reported to date, the double bond introduced by FADX during fatty acid desaturation was in the trans, rather than cis, configuration. Phylogenetic analysis revealed that tung FADX is grouped with delta(12) fatty acid desaturases and hydroxylases rather than conjugases, which is consistent with its desaturase activity. Comparison of FADX and other lipid-modifying enzymes (desaturase, hydroxylase, epoxygenase, acetylenase, and conjugase) revealed several amino acid positions near the active site that may be important determinants of enzymatic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.