Abstract

Although considered rare, airborne pollen can be deposited far from its place of origin under a confluence of favorable conditions. Temporally anomalous records of Cupressacean pollen collected from January air samples in London, Ontario, Canada have been cited as a new case of long-distance transport. Data on pollination season implicated Juniperus ashei (mountain cedar), with populations in central Texas and south central Oklahoma, as the nearest source of the Cupressacean pollen in the Canadian air samples. This finding is of special significance given the allergenicity of mountain cedar pollen. While microscopy is used extensively to identify particles in the air spora, pollen from all members of the Cupressaceae, including Juniperus, are morphologically indistinguishable. Consequently, we implemented a molecular approach to characterize Juniperus pollen using PCR in order to test the long-distance transport hypothesis. Our PCR results using species-specific primers confirmed that the anomalous Cupressacean pollen collected in Canada was from J. ashei. Forward trajectory analysis from source areas in Texas and the Arbuckle Mountains in Oklahoma and backward trajectory analysis from the destination area near London, Ontario were completed using models implemented in HYSPLIT4 (Hybrid Single-Particle Lagrangian Integrated Trajectory). Results from these trajectory analyses strongly supported the conclusion that the J. ashei pollen detected in Canada had its origins in Texas or Oklahoma. The results from the molecular findings are significant as they provide a new method to confirm the long-distance transport of pollen that bears allergenic importance.

Highlights

  • Long-distance transport of pollen grains has been reported and discussed in several investigations [1,2,3,4,5,6,7,8]

  • The in-silico analysis undertaken to assess primer specificity of asheimatKF1 and asheimatKR1 primers confirmed that the matK genes reported for J. horizontalis, and J. scopulorum would not be amplified by these primers

  • The DNA for the Cupressacean pollen obtained from the 15 Jan 2014 London, Ontario sample was successfully amplified using primers that were specific for J. ashei (Fig 2B)

Read more

Summary

Introduction

Long-distance transport of pollen grains has been reported and discussed in several investigations [1,2,3,4,5,6,7,8]. Campbell et al [7] reported deposits of jack pine and white spruce pollen near Repulse Bay, Northwest Territories, Canada. Results from backward-trajectory analysis indicated that pollen had been transported from central Quebec to Repulse Bay Backward trajectories indicated long-distance transport of large numbers of exotic pollen grains from northeastern North America to southern Greenland [5]. Long-distance transport of Betula pollen grains from southwestern Russia, The Baltic states and Poland to Finland were documented and analyzed by trajectory analysis [3].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.