Abstract

In the present experiments, two groups of BALB/c mice (five individuals in each group) were hyperimmunized through four consecutive immunizations with either BK virus (Group 1) or BK dsDNA complexed with methylated BSA (Group 2). All immune sera taken after the fourth immunization from both groups reacted strongly with polyomavirus BK dsDNA as well as with calf thymus dsDNA, and all sera contained antibodies that bound in the Crithidia luciliae assay. This indicates that polyomavirus BK was able to induce antibodies with binding characteristics similar to SLE anti-DNA antibodies. To further characterize these induced anti-DNA responses, 10 monoclonal anti-DNA antibodies (four from Group 1, and six from Group 2) were generated and selected for reactivity with S1-nuclease digested CT dsDNA. Their specificity for BK and CT dsDNA molecules, as well as their light and heavy chain variable region cDNA nucleotide sequences were analysed to compare them with known SLE derived anti-DNA antibodies. All of the 10 antibodies bound strongly to BK dsDNA, while seven also bound to CT dsDNA in competitive ELISA experiments. V-region analysis revealed that the induced antibodies resembled anti-DNA antibodies characteristic for murine SLE, and all but one contained arginine in the VH CDR3 region. The arginines present in the monoclonal antibodies originated either from an RF shift from RF1-->RF3 of the D-genes or from N-sequence additions. Taken together, the data demonstrate that anti-DNA antibodies in response to hyperimmunization with polyomavirus BK have the same characteristics as of those occurring spontaneously in SLE. As virus infection/replication in vivo implies expression of immunogenic (non-self) DNA-binding proteins that may render DNA immunogenic, the present results may therefore suggest one physiological mechanism for production of SLE-related anti-DNA antibodies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.