Abstract

The molecular aggregation structure and surface properties of a catechol-bearing fluoropolymer, P(FAC8-co-DOPAm), which was synthesized by conventional radical copolymerization of 2-(perfluorooctyl)ethyl acrylate (FAC8) and N-(3,4-dihydroxyphenethyl)acrylamide (DOPAm), and its application to the superamphiphobic surfaces are presented. The crystallinity of P(FAC8-co-DOPAm) was lower than that of poly[2-(perfluorooctyl)ethyl acrylate] (PFAC8). The perfluoroalkyl (Rf) groups were ordered on the surface with CF3 terminals exposed to air, and the Rf ordering was influenced by thermal history: the thermally annealed film exhibited higher Rf ordering than the unannealed one. The surface free energy was estimated to be γ = 7.32 mJ m–2 for both the unannealed and annealed films. Based on contact angle measurement, various interfacial structures of water and oils in accordance with the surface aggregation structure of Rf groups were proposed. Dewetting of the PFAC8 film at elevated temperature was suppressed by the introduction of catechol groups in the backbone. The degradation temperature of PFAC8 was improved significantly, and the evaporation of the low molar mass-polymer was inhibited by the introduction of catechol groups under both nitrogen and air atmospheres. The hydrophobicity of the copolymer films could be healed after the surface was damaged by vacuum ultraviolet (VUV) irradiation. This copolymer was used to create superamphiphobic fabrics and halloysite nanotube (HNT)-based organic/inorganic hybrid coatings successfully. Wetting behaviors of the superamphiphobic fabrics and coatings both follow the Cassie–Baxter wetting model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call