Abstract
Gas-phase molecular adsorption was investigated as a model for molecular cloud formation. Molecular adsorption on cold gas-phase hydrogen-bonded clusters containing protonated tryptophan (Trp) enantiomers and monosaccharides such as methyl-α-D-glucoside, D-ribose, and D-arabinose was detected using a tandem mass spectrometer equipped with an electrospray ionization source and cold ion trap. The adsorption sites on the surface of cold gas-phase hydrogen-bonded cluster ions were quantified using gas-phase N2 adsorption-mass spectrometry. The gas-phase N2 adsorption experiments indicated that the number of adsorption sites on the surface of the hydrogen-bonded heterochiral clusters containing L-Trp and D-monosaccharides exceeded the number of adsorption sites on the homochiral clusters containing D-Trp and D-monosaccharides. H2O molecules were preferentially adsorbed on the heterochiral clusters, and larger water clusters were formed in the gas phase. Physical and chemical properties of cold gas-phase hydrogen-bonded clusters containing biological molecules were useful for investigating enantiomer selectivity and chemical evolution in interstellar molecular clouds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.