Abstract

The objective of this study is to optimize the mold taper for continuous casting of H-beam blanks. A thermo-mechanical coupled mathematical model was established to analyze the heat transfer, solidification, and shrinkage of the strand in the mold based on the multiple load step method. Based on the simulation results of the air gap distribution in the mold, the mold taper was optimized at selected points on the surface of H-beam blank mold by minimizing the air gap thickness and the best taper scheme was proposed. The results show that the original mold tapers are relatively larger and the optimum mold tapers are as follows: (1) taper at the flange surface: 0.81%/m; (2) taper at the narrow face: 0.68%/m; (3) taper at the fillet: −1.44%/m. The optimum mold size obtained from taper optimization was used in the actual continuous casting process and based on the results, it can be concluded that the optimum mold taper scheme proposed in this study reduced the formation of surface cracks in H-beam blanks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call