Abstract

Bamboo is readily discolored by mold fungi, which greatly limits its applications. An effective antifungal agent, copper(II) chloride (CuCl2)-grafted silica gel, was prepared by a sol–gel process using tetraethoxysilane (TEOS)/3-aminopropyltriethoxysilane (APTES) mixtures. The elemental composition and the chemical combinations of homogeneous sol mixture (HSM) and bamboo were determined via Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM–EDS). The mold resistance of bamboo treated with HSM, alkaline copper quat (ACQ), chromated copper arsenate (CCA), and purified water was characterized by an indoor mold test. The micro-morphology of bamboo treated with HSM was investigated using scanning electron microscopy (SEM). HSM penetrated into the bamboo vessels, and formed xerogels, which was able to coordinate copper(II) cations. SEM–EDS investigations suggest that Si–O–Cu linkages may be formed through an exchange reaction between silanol groups and copper complexes. The bamboo samples treated with HSM showed highly efficient mold resistance due to a good penetration of HSM. Furthermore, no fungal hyphae were found in the structure of HSM-treated bamboo after a 5-week mold test. The copper complexes grafted to silica gel developed in this work provide an efficient antifungal agent for a wide range of potential applications in bamboo protection.

Highlights

  • Bamboo is the fastest-growing and most versatile plant on earth, including about 75 genera with approximately 1300 species and varieties covering 25 million hectares worldwide [1]

  • Fourier transform infrared (FTIR) analysis of untreated bamboo and bamboo treated with homogeneous sol mixture (HSM)

  • FTIR measurements and scanning electron microscopy (SEM)–EDS investigations augmented for the interpenetration of HSM inside the bamboo

Read more

Summary

Introduction

Bamboo is the fastest-growing and most versatile plant on earth, including about 75 genera with approximately 1300 species and varieties covering 25 million hectares worldwide [1]. Bamboo is widely planted in the South of China, including the mountainous regions of Hunan, Hubei, Fujian, Guangdong, Guangxi, Guizhou, Sichuan, Chongqing, Yunnan, and Zhejiang provinces [2]. Bamboo is degraded by molds, decay fungi, and insects since it contains high amounts of starch and Copper (Cu) is an essential biocide for bamboo protection, and has been long used as a wood preservative [4]. The major drawback of copper is unsatisfactory fixation to wood. Efforts to reduce the leaching of the active components of wood preservatives have a long history [5]. Chromated copper arsenate (CCA) has been used for wood preservation for more than 70 years. CCA is problematic from the viewpoint of environmental protection, high toxicity to mammals, and the service life of treated wood [9].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call