Abstract
A 15-week treatability study was conducted in a greenhouse to evaluate the potential effects of molasses on the bioremediation and phytoremediation potential of Guinea Grass (Panicum maximum) for treating energetic contaminated soil from the open burn/open detonation area of the Makua Military Reservation, Oahu, HI (USA). The energetics in the soil were royal demolition explosive (RDX) and high-melting explosive (HMX). Among the 6 treatments employed in this study, enhanced removal of RDX was observed from treatments that received molasses and went to completion. The RDX degradation rates in treatments with molasses diluted 1:20 and 1:40 were comparable suggesting that the lower dose worked as well as the higher dose. Treatments without molasses degraded RDX slowly and residuals remained after 15 weeks. The bacterial densities in molasses-treated units were much greater than those without molasses. Phytoremediation alone seems to have little effect on RDX disappearance. For HMX, neither bioremediation nor phytoremediation was found to be useful in reducing the concentration within the experimental period. The concentrations of nitrogen and phosphorous in the soil did not change significantly during the experiment, however, a slight increase in soil pH was observed in all treatments. The study showed that irrigating with diluted molasses is effective at enhancing RDX degradation mainly in the root zone and just below it. The long term sustainability of active training ranges can be enhanced by bioremediation using molasses treatments to prevent RDX deposited by on-going operations from migrating through the soil to groundwater and off-site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.