Abstract

AbstractObjectivesTo test the hypothesis that differences in crown structure, enamel growth, and crown geometry in Cercocebus and Lophocebus molars covary with differences in the feeding strategies (habitual vs. fallback durophagy, respectively) of these two genera. Relative to Lophocebus molars, Cercocebus molars are predicted to possess features associated with greater fracture resistance and to differ in enamel growth parameters related to these features.Materials and MethodsSample proveniences are as follows: Cercocebus atys molars are from the Taï Forest, Ivory Coast; Lophocebus albigena molars are from a site north of Makoua, Republic of Congo; and a Lophocebus atterimus molar is from the Lomako Forest, Democratic Republic of Congo. For μCT scans on which aspects of molar form were measured, sample sizes ranged from 5 to 35 for Cercocebus and 3 to 12 for Lophocebus. A subsample of upper molars was physically sectioned to measure enamel growth variables.ResultsPartly as a function of their larger size, Cercocebus molars had significantly greater absolute crown strength (ACS) than Lophocebus molars, supporting the hypothesis. Greater crown heights in Cercocebus are achieved through faster enamel extension rates. Also supporting the hypothesis, molar flare and proportional occlusal basin enamel thickness were significantly greater in Cercocebus. Relative enamel thickness (RET), however, was significantly greater in Lophocebus.DiscussionIf ACS is a better predictor of fracture resistance than RET, then Cercocebus molars may be more fracture resistant than those of Lophocebus. Greater molar flare and proportional occlusal basin thickness might also afford Cercocebus molars greater fracture resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call