Abstract

IntroductionRadiochemists/radiopharmacists, involved in the preparation of radiopharmaceuticals are regularly confronted with the requirement of continuous high quality productions in their day-to-day business. One of these requirements is high specific or molar activity of the radiotracer in order to avoid e.g. receptor saturation and pharmacological or even toxic effects of the applied tracer for positron emission tomography. In the case of 11C-labeled radiotracers, the reasons for low molar activity are manifold and often the search for potential 12C-contaminations is time-consuming. MethodsIn this study, diverse 12C-contaminations were analyzed and quantified, which occurred during >450 syntheses of six PET tracers using [11C]CO2 or [11C]CH3I generated via the gas phase method in a commercially available synthesizer. Additionally, non-radioactive syntheses were performed in order to identify the origins of carbon-12. ResultsThe manifold contributions to low molar activity can be attributed to three main categories, namely technical parameters (e.g. quality of target gases, reagents or tubings), inter/intralaboratory parameters (e.g. maintenance interval, burden of the module, etc.) and interoperator parameters (e.g. handling of the module). ConclusionOur study provides a better understanding of different factors contributing to the overall carbon load of a synthesis module, which facilitates maintenance of high molar activity of carbon-11-labeled radiopharmaceuticals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call