Abstract
Molar absorptivity is a fundamental molecular property that quantifies absorption strength as a function of wavelength. Absolute measurements of molar absorptivity demand accounting for all mechanisms of light attenuation, including reflective losses at interfaces associated with the sample. Ideally, such measurements are performed in nonabsorbing solvents and reflective losses can be determined in a straightforward manner from Fresnel equations or effectively accounted for by path length difference methods. At near-infrared wavelengths, however, many solvents, including water, are absorbing which complicates the quantification of reflective losses. Here, generalized equations are developed for calculating absolute molar absorptivities of neat liquids wherein the dependency of reflective loss on absorption properties of the liquid are considered explicitly. The resulting equations are used to characterize sensitivity of absolute molar absorptivity measurements for solvents to the absorption strength of the solvent as well as the path length of the measurement. Methods are derived from these equations to properly account for reflective losses in general and the effectiveness of these methods is demonstrated for absolute molar absorptivity measurements for water over the combination region (5000-4000 cm-1) of the near-infrared spectrum. Results indicate that ignoring solvent absorption effects can incorporate wide ranging systematic errors depending upon experimental conditions. As an example, systematic errors range from 0 to 10% for common conditions used in the measurement of absolute molar absorptivity of water over the combination region of the near-infrared spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.