Abstract

AbstractThis study classifies the spatial distribution of heavy precipitation in summer (June–August) from 1979 to 2021 in the three provinces of Northeast China (TPNC) into two patterns by using the self‐organizing maps (SOM) neural network, and then quantitatively analyzes their moisture transport channels and sources using the Lagrangian model. The results show that the summer heavy precipitation in TPNC can be divided into the northern and southern patterns according to the distribution of the heavy precipitation. Both patterns of heavy precipitation are affected by the low‐level vortex west of TPNC, but the strength and shape of the low vortex are different. The northern pattern is mainly influenced by the westerly flow in the vortex in the mid‐high latitudes, which transports moisture from the upstream westerly region into TPNC. The southern pattern is mainly affected by the southerly jet stream southeast of TPNC, which conveys a large amount of moisture from the East Asian summer monsoon region into TPNC. In terms of the summer climatological mean, the northern pattern has a higher precipitation recycling rate, while the southern pattern has a lower recycling rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.