Abstract

The water sorption isotherms of carrot were determined at five different temperatures (at 10, 20, 30, 40 and 50ºC) within wide ranges of moisture content (1.3-78.4 kg water /100 kg dry matter) and water activities (0.165-0.907) by using a standardized conductivity thermohygrometer. The sorption isotherms exhibited the type III behaviour, thus, an increase in temperature promoted a decrease in water activity. The GAB, Halsey, Henderson, Iglesias & Chirife and Oswin models were tested to fit the experimental data by using nonlinear regression analysis. The GAB and Henderson models satisfactorily described the sorption isotherms (mean relative error < 5.6%). The net isosteric heat of sorption (Qstn) and the differential entropy (Sd), estimated as functions of the moisture content, decreased as the carrot moisture content increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call