Abstract

The moisture sorption isotherm of wheat gluten/epoxydized sesame or sunflower oil resin was determined at 25, 40, and 55°C. The resin was prepared by cross-linking epoxydized oil and wheat gluten using 1, 2, and 3% zinc chloride as the catalyst. The experiment was carried out over 0.1–0.9 water activity ( a w) range using gravimetric sorption analyzer (Q 2000, TA Instruments, New Castle, PA, USA). The resin isotherms were found to be type III shape where the equilibrium moisture content (EMC) was higher at lower temperatures. The EMC of gluten epoxy resin was dependent on the degree of cross-linking because more cross-linking decreased EMC. The Guggenheim Anderson-de Boer (GAB) parameters support the theory of the free volume as it relates to monolayer absorption. This could be attributed to the decrease in the number of water binding sites due to the development of dense areas during cross-linking and increase in the free volume. The GAB and Brunauer–Emmett–Teller were found to be suitable for predicting the water sorption isotherm for gluten protein resin because it provided low root mean square error. The heat of sorption based on the Clausius–Clapeyron equation (qst) increased with decrease in moisture content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call