Abstract

Summary This paper presents a sand column dataset on the soil moisture-pressure dynamics above a simple harmonic oscillating water table. A total of 19 experiments were conducted in which all experimental parameters were held constant except for the oscillation period which ranged between 12.25 h down to 10 s. The data show clear evidence of hysteresis at longer oscillation periods where the unsaturated zone has sufficient time to adjust to the water table motion. At shorter periods the contrary exists with the extent of moisture-pressure variations greatly reduced and, for periods less than 15 min, the dynamics become non-hysteretic. The high frequency moisture-pressure loops, although non-hysteretic, do not follow the (non-hysteretic) static equilibrium wetting or drying curves but are consistent with the scanning loops generated by a commonly adopted hysteresis algorithm for numerical solution of the Richards (1931) equation. Thus, the data provides new physical insights behind the need to include hysteresis effects when simulating high frequency water table motions as found by previous researchers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.