Abstract
AbstractStrict protection of organic light‐emitting diodes (OLEDs) and other optoelectronic materials from direct contact with ambient moisture and oxygen is one of the major challenges in the development of flexible OLED displays and other flexible electronic devices. This problem is typically addressed by the use of polymeric substrates with multilayered barrier coatings comprising alternating organic/inorganic layers. The multilayered barrier approach is critically examined using a numerical model based on a defect‐dominated diffusion process combined with experiments involving face‐to‐face lamination of two barrier films. The modeling results identify two regimes, corresponding to two distinct permeation mechanisms, and provide scaling relationships and general design criteria for multilayered barrier coatings. The results suggest that the most significant gain in barrier performance can be realized when the thickness of the organic/adhesive layer(s) in the multilayered structure is less than the average pinhole (defect) size in the inorganic barrier layer(s). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.