Abstract

Nusantara, Indonesia’s new capital city, experienced a rare extreme rainfall event on 27–28 August 2021. This heavy rainfall occurred in August, the driest month of the year based on the monthly climatology data, and caused severe flooding and landslides. To better understand the underlying mechanisms for such extreme precipitation events, we investigated the moisture sources and transport processes using the Lagrangian model HYSPLIT. Our findings revealed that moisture was mostly transported to Nusantara along three major routes: from Borneo Island (BRN, 53.73%), the Banda Sea and its surroundings (BSS, 32.03%), and Sulawesi Island (SUL, 9.05%). Overall, BRN and SUL were the main sources of terrestrial moisture, whereas the BSS was the main oceanic moisture source, having a lower contribution than its terrestrial counterpart. The terrestrial moisture transport from BRN was mainly driven by the large-scale high vortex flow, whereas the moisture transport from the SUL was driven by the circulation induced by boreal summer intraseasonal oscillation (BSISO) and low-frequency variability associated with La Niña. The near-surface oceanic moisture transport from BSS is primarily associated with prevailing winds due to the Australian monsoon system. These insights into moisture sources and pathways can potentially improve the accuracy of predictions of summer precipitation extremes in Indonesia’s new capital city, Nusantara, and benefit natural resource managers in the region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call