Abstract
Glacial recession is occurring at unprecedented rates resulting in increased sediment accumulations in some riverine ecosystems providing new mineral surfaces for soil formation. Soils and sediments have an enormous potential to retain carbon (C), predominantly due to sorption to mineral surfaces. However, C persistence may be sensitive to climate-change induced temperature and moisture variations. We coupled ultrahigh resolution organic matter composition classification with bacterial characterization and respiration measurements to test the combined pedogenic effects of temperature (4 vs 20 °C) and moisture (50 vs 100% water-filled pore space) on C turnover in sediments maintained under different mineralogical conditions (illite-amended vs non-amended). Here we show that the inhibition of CO2 emissions from the combined effect of increased moisture content and illite was reflected in the turnover of key molecular signatures, such as the nominal oxidation state of C, often irrespective of temperature. However, shifts in bacterial communities from a coupled moisture-mineral interaction, were temperature-dependent. Our results highlight the importance of moisture in driving mineral-organic interactions and suggest that C in clay-rich, water-saturated sediments is both thermodynamically unfavorable and mineral-protected from microbial consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.