Abstract
When an oak board is exposed to a change in the relative humidity of the ambient air, moisture transfer occurs. Consequentially, the internal moisture content distribution changes continuously, which induces bending of the board over time. With increasing asymmetry in the internal moisture content distribution, induced by an increasing difference in relative humidity over the board thickness, the board's curvature increases. In case the board is subjected to two different sinusoidal fluctuations in relative humidity on its opposite sides, the bending response is a superposition of two sinusoidal fluctuations. The influences of different fluctuation frequencies, amplitudes, and phase shifts on the macroscopic bending are theoretically predicted and experimentally explored. Moisture transport characteristics are derived from a frequency analysis of the macroscopic bending response, whereas the equilibrium bending configuration provides the linear hygroscopic expansion coefficient. Furthermore, the effect of hysteresis during sinusoidal relative humidity fluctuations is explored. The results are used in a case study to predict the deformation of an oak door separating an indoor and outdoor environment, with differently varying relative humidity on both sides of the door.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.