Abstract

This paper investigated the effect of moisture ingress on the bending fatigue of laminated composites. An accelerated testing method was developed to investigate the correlation between composite fatigue and moisture diffusion effects. Unidirectional and cross-ply laminated CFRP composites were manufactured in autoclave, and then submerged in both fresh and seawater for various periods until moisture saturation. Quasi-static and cyclic tests were carried out in both air and wet environment, and the failure mechanisms were investigated using visual and microscopic methods. Additionally, a robust 2D Finite Element model (FEA) was developed to simulate the fatigue crack propagation based on virtual crack closure technique (VCCT), while a 3D FEA model was developed to investigate the edge effect on fatigue crack propagation. The experimental observations gave a good agreement with the FEA models. The study showed that the bending fatigue failure was due to the so-called buckling-driven delamination, and the fatigue life was reduced significantly owing to the combination of edge effect and capillary effect. The fatigue test indicated that the fatigue resistance was degraded one stress level due to the water ingress, e.g. from 80% ultimate flexural strength (UFS) to 65% UFS. Therefore, a 4-step fatigue failure theory was proposed to explain the moisture effects on the crack propagation under bending fatigue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.