Abstract
Moisture dry-out from steel-faced insulated sandwich panels has previously received little attention from researchers. This paper reports the results from laboratory tests and dynamic heat, air, and moisture transport simulations of the moisture dry-out capabilities of a steel-faced sandwich panel with a mineral wool core. Three test walls (TWs) with dimensions of 1.2 m × 0.4 m × 0.23 m were put above water containers to examine the moisture transport through the TWs. A calibrated simulation model was used to investigate the hygrothermal regime of a sandwich panel wall enclosure with different initial moisture contents and panel joint tightening tapes. The moisture dry-out capacity of the studied sandwich panels is limited (up to 2 g/day through a 30-mm-wide and 3-m-long vertical joint without tapes). When the vertical joint was covered with a vapour-permeable tape, the moisture dry-out was reduced to 1 g/day and when the joint was covered with a vapour-retarding tape, the dry-out was negligible. A very small amount of rain would be enough to raise the moisture content to water vapour saturation levels inside the sandwich wall, had the rain ingressed the enclosure. The calculated time of wetness (TOW) on the internal surface of the outer steel sheet stayed indefinitely at about 5500 h/year when vapour-retarding tapes were used and the initial relative humidity (RH) was over 80%. TOW stabilised to about 2000 h/year when a vapour-permeable tape was used regardless of the initial humidity inside the panel. A vapour-permeable tape allowed moisture dry-out but also vapour diffusion from the outside environment. To minimise the risk of moisture damage, avoiding moisture ingress during construction time or due to accidents is necessary. Additionally, a knowledge-based method is recommended to manage moisture safety during the construction process.
Highlights
Insulated sandwich panels are layered structures which have two facings and an insulating core
The laboratory test demonstrated that when the vertical joint is covered with a vapour-permeable tape, the moisture dry-out will be reduced to a half of that of an uncovered joint
This study investigated the moisture dry-out capacity and the hygrothermal regime of a steel-faced sandwich panel with mineral wool insulation
Summary
Insulated sandwich panels are layered structures which have two facings and an insulating core. The majority of sandwich panel producers in Europe focus on panels with metal facings and rigid plastic foam or mineral wool for the core material [2]. Plastic foams give the highest values of thermal insulation but panels with mineral wool can reach adequate thermal insulating properties. Such panels are well suited for walls and roofs [2]. Recent research suggests that mineral wool has a lower environmental impact than hydrocarbon-based insulation materials [3,4] and, might be of interest as the more sustainable choice of the two.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.