Abstract

The moisture diffusion coefficient of compression wood in spruce (P. abies) and tension wood in beech (F. sylvatica) was examined. The results indicated that the diffusion coefficient measured under steady-state condition (cup method) could well characterize the drying kinetics of the reaction woods. The compression wood offered more resistance to the moisture diffusivity when compared with the corresponding normal wood. The thick cell wall rich in lignin explains the small mass diffusivity in compression wood. In contrast, the mass diffusivity in beech is almost always higher in tension wood than in normal wood, in spite of similar density values. The high moisture diffusion in tension wood can be explained by the ease of bound water diffusion in the gelatinous layers (G-layers).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.