Abstract
PurposeThe purpose of this study is the numerical investigation of densification and molding processes of wood. Providing theoretical and numerical approaches with respect to a consistent multi-physical finite element method framework are further goals of this research.Design/methodology/approachConstitutive phenomenological descriptions of the thermo-mechanical and moisture-dependent material characteristics of wood are introduced. Special focus is given to a consistent hygro-thermo-mechanical modeling at finite deformations to capture the realistic material behavior of wood, especially when it is subjected to densification and molding processes.FindingsRealistic theoretical formulations of different hygro-thermo-mechanical processes are provided. A successful numerical modeling is demonstrated for beech wood by validation at experimental findings.Originality/valueThe constitutive laws and numerical findings are new, as they govern a multi-physical large deformation framework and are applied to the advanced technology of densification and molding of wood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.