Abstract
This study investigated the moisture distribution characteristics of a soil wetting body under different influencing factors to inform the design and management of a moistube irrigation system. A mathematical model of soil moisture movement under moistube irrigation was established based on Hydrus-2D software. The suitability of the Hydrus-2D simulation model was verified by laboratory experiments. Numerical simulations were carried out with Hydrus-2D to investigate the influence of soil texture, initial moisture content, moistube specific discharge and irrigation time on the moisture distribution of a soil wetting body. The soil moisture content is highest at the moistube, and its value is related to the moistube-specific discharge and soil texture. The soil moisture content at any point in the wetting body decreased linearly with increasing distance from the wetting front to the moistube in the five set directions (vertical downward, 45° downward, horizontal, 45° upward and vertical upward). This trend is applicable to fine-textured and coarse-textured soil. An estimation model of soil moisture content including soil saturated hydraulic conductivity, initial soil moisture, the specific flow rate of the moistube and the maximum value of the wetting front distance in all directions is proposed. The model estimation is good (root mean square error = 0.008–0.018 cm3·cm−3, close to 0; Nash-Sutcliffe efficiency coefficient = 0.987, close to 1), and it can provide a practical tool for moistube irrigation design and agricultural water management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.