Abstract

AbstractThe precipitation in the Qilian (QMA) and Tienshan (TMA) mountain areas is one of the main sources of subsurface and surface water in northwestern China (NWC). Based on two datasets, CN05.1 and station‐observed daily precipitation, we found that summer precipitation in 1979–2020 exhibited an increasing trend in NWC. The results of rotation empirical orthogonal function (REOF) analysis also separated the increased precipitation patterns in the QMA and TMA from the other REOF modes; the proportion of the precipitation of these areas to the total NWC summer precipitation substantially increased (0.12%⋅year−1 and 0.03%⋅year−1, respectively). According to the moisture budget, the evaporation changes in the QMA and TMA were coherently coupled with precipitation, which suggested the feedback between increasing evaporation and precipitation with the recently warming climate. The precipitation increase was larger than that of evaporation, indicating a net wetting trend in the QMA and TMA. The increase in zonal horizontal and vertical moisture advection terms contributed more to the increased precipitation in the QMA. The increase in meridional moisture advection contributed more to the increased precipitation in the TMA. We concluded comprehensive frameworks of the water vapor transport in climate change in mountain areas in NWC which aimed to contribute to the understanding of arid region hydrology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.