Abstract

This paper introduces a hygrothermal model accounting for the moisture and heat transport in a massive wood envelope directly exposed to an indoor climate. A better knowledge of the passive interaction between an indoor climate and a heavy timber structure could lead to presenting an alternative to high air exchange rate, and to increasing the thermal comfort of the inhabitants. So far, the model is developed as a stand-alone application with a finite difference method, and is written in a Neutral Model Format, enabling a later implementation in a modular environment for indoor climate energy calculations, called IDA ICE. A numerical simulation is provided to depict the buffering capacity of a massive timber structure as a function of the air exchange rate and the effective wood wall area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call