Abstract

AbstractAltered surface ultraviolet‐B (UV‐B) radiation resulting from a combination of factors that include changes in stratospheric ozone concentrations, cloud cover, and aerosol conditions may affect litter decomposition and, thus, terrestrial nutrient cycling on a global scale. Although litter decomposition rates vary across biomes, patterns of decomposition suggest that UV‐B radiation accelerates litter decay in xeric environments where precipitation is infrequent. However, under more frequent precipitation regimes where litter decay rates are characteristically high, the effect of UV‐B radiation on litter decomposition has not been fully elucidated. To evaluate this association between moisture regime and UV‐B exposure, a litter decomposition experiment was designed for aspen (Populus tremuloides) leaf litter, where conditions that influence both abiotic (photodegradation) and biotic (microbial) processes could be manipulated quantitatively. We found that experimentally increasing UV‐B exposure (0, 7.4, and 11.2 kJ m−2 day−1, respectively) did not consistently increase litter decomposition rates across simulated precipitation frequencies of 4, 12, and 24 days. Instead, a UV‐B exposure of 11.2 kJ m−2 day−1 resulted in a 13% decrease in decomposition rates under the 4‐day precipitation frequency, but an increase of 80% under the 24‐day frequency. Furthermore, the same UV‐B dose increased litter decomposition rates under the 24‐day precipitation frequency by 78% even in conditions where microbial activity was suppressed. Therefore, under more xeric conditions, greater exposure to UV‐B radiation increased decomposition rates, presumably through photodegradation. In contrast, when decomposition was not moisture‐limited, greater UV‐B exposure slowed decomposition rates, most likely from the resulting inhibition of microbial activity. Ultimately, these experimental results highlight UV‐B radiation as a potential driver of decomposition, as well as indicate that both the direction and magnitude of the UV‐B effect is dependent on moisture availability, a factor that may change according to future patterns in global precipitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.