Abstract

Mosaic 3-D cascade of parallelepiped-shaped silt blocks, which sandwich sand- lled cracks, has been discovered in the eld and tested in lab experiments. Controlled wetting-drying of these blocks, collected from a dam reservoir, mimics field ponding-desiccation conditions of the topsoil layer subject to caustic solar radiation, high temperature and wind, typical in the Batinah region of Oman. In 1-D analytical modelling of a transient Richards’ equation for vertical evaporation, the method of small perturbations is applied, assuming that the relative permeability is Avery-anov’s 3.5-power function of the moisture content and capillary pressure is a given (measured) function. A linearized advective dispersion equation is solved with respect to the second term in the series expansion of the moisture content as a function of spatial coordinates and time. For a single block of a nite thickness we solve a boundary value problem with a no- ow condition at the bottom and a constant moisture content at the surface. Preliminary comparisons with theta-, TDR- probes measuring the moisture content and temperature at several in-block points are made. Results corroborate that a 3-D heterogeneity of soil physical properties, in particular, horizontal and vertical capillary barriers emerging on the interfaces between silt and sand generate eco-niches with stored soil water compartments favourable for lush vegetation in desert conditions. Desiccation significantly increases the temperature in the blocks and re-wetting of the blocks reduces the daily average and peak temperatures, the latter by almost 15°C. This is important for planning irrigation in smartly designed soil substrates and sustainability of wild plants in the region where the top soil peak temperature in the study area exceeds 70°C in Summer but smartly structured soils maintain lash vegetation. Thee layer of dry top-blocks acts as a thermal insulator for the subjacent layers of wet blocks that may host the root zone of woody species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call