Abstract

Sorption mechanisms of borojó pulp (BPP), three borojó phases (liquid phase (LP), medium phase (MP) and solid phase (SP)), gum arabic (GA), and a mixture of these (BP) produced by freeze-drying were interpreted through adsorption isotherms. The adsorption models adequately describe the experimental data over the entire measured range of aw; R2 was close to 1 for the studied conditions. For the thermodynamic properties, the differential and integral enthalpy of BP showed a synergic effect of the combined components. This shows that using a combination of polymers increases the interaction energy of water molecules with the surface of the material. The monolayers from the BET and GAB models showed similar moisture content values that corresponded to the minimum integral entropy. Finally, the behavior of the enthalpy–entropy compensation of water adsorption for the SP, MP and GA powders at low moisture contents demonstrated that the content is controlled by an entropic mechanism, for BP, BPP and LP powders, the water adsorption may be considered as mainly enthalpy-driven.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.