Abstract

The moisture adsorption isotherms of solar dehydrated mango and jackfruit were determined at temperatures ranging from 30 °C to 50 °C. The equilibrium moisture content (EMC) of mango and jackfruit increased sharply as the temperature increased at water activity (aw) above 0.6 and 0.8, respectively. However, there were no clear isothermal intersection points observed at higher aw and temperatures. The EMC of solar dehydrated jackfruit showed the isothermal characteristics between types II and III. In contrast, dehydrated mango followed the characteristic type III adsorption isotherms due to high total soluble solids content of 67.8 °Brix and total sugars of 14.21 g/100 g fresh mango. Estimated parameters and fitting ability of three isotherm models were also evaluated. The Guggenheim-Anderson-Boer (GAB) model gave the best fit to the experimental EMC data. The GAB monolayer moisture contents (mo) of mango and jackfruit ranged from 11.1–10.0 % and 4.7–3.4 %, respectively. Specific surface area of active binding sites (S) was calculated based on the mo values. The S value of dehydrated mango was 2.5 to 2.8 times larger than jackfruit. The maximum net isosteric heat (qs) of sorption of solar dehydrated mango and jackfruit were determined as 19.5 and 33 kJ mol−1, respectively, and qs decreased significantly at high moisture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.