Abstract
The advancement in thermosensitive active hydrogels has opened promising opportunities to dynamic full-thickness skin wound healing. However, conventional hydrogels lack breathability to avoid wound infection and cannot adapt to wounds with different shapes due to the isotropic contraction. Herein, a moisture-adaptive fiber that rapidly absorbs wound tissue fluid and produces a large lengthwise contractile force during the drying process is reported. The incorporation of hydroxyl-rich silica nanoparticles in the sodium alginate/gelatin composite fiber greatly improves the hydrophilicity, toughness, and axial contraction performance of the fiber. This fiber exhibits a dynamic contractile behavior as a function of humidity, generating ≈15% maximum contraction strain or ≈24MPa maximum isometric contractile stress. The textile knitted by the fibers features excellent breathability and generates adaptive contraction in the target direction during the natural desorption of tissue fluid from the wounds. In vivo animal experiments further demonstrate the advantages of the textiles over traditional dressings in accelerating wound healing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.