Abstract
Twenty-five years of neutron experiments on hydration and thermal dynamics in purple membranes of Halobacterium salinarum are reviewed. Neutron diffraction, elastic and quasielastic scattering, allowed to map the distribution of water and lipids and to measure thermal fluctuations and correlation times in the membranes, under various conditions of temperature, hydration and lipid environment. Strong correlations were established between dynamics parameters and the activity of bacteriorhodopsin (the purple membrane protein), as a light driven proton pump supporting the hypothesis that the influence of hydration on activity is in fact due to its effects on membrane thermal dynamics. Hydrogen–deuterium labelling experiments highlighted stiffer and softer parts in the bacteriorhodopsin structure. The soft parts would allow the conformational changes involved in activity, while the stiffer ones may control a valve-like function in vectorial proton transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.