Abstract

Two-dimensional (2D) layered materials have been widely used as catalysts due to their high specific surface area, large fraction of uncoordinated surface atoms, and high charge carrier mobility. Moiré superlattice emerges in 2D layered materials with twist angle or lattice mismatch. By manipulating the moiré superlattice structure, 2D layered materials present modulated electronic band structure, topological edge states, and unconventional superconductivity which are tightly associated with the performance of catalysts. Hence, engineering moiré superlattice structures are proposed to be an important technology in modifying 2D layered materials for improved catalytic properties. However, currently, the investigation of moiré superlattice structure in a catalytic application is still in its infancy. This perspective starts with the discussion of structural features and fabrication strategy of 2D materials with moiré superlattice structure. Afterward, the catalytic applications, including electrocatalytic and photocatalytic applications, are summarized. In particular, the promotion mechanism of the catalytic performance caused by the moiré superlattice structure is proposed. Finally, the perspective is concluded by outlining the remaining challenges and possible solutions for the future development of 2D materials with moiré superlattice structure towards the catalytic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.