Abstract

Twisting bilayers of two-dimensional topological insulators has the potential to create unique quantum states of matter. Here, we successfully synthesized a twisted bilayer of germanene on Ge2Pt(101) with a 21.8° twist angle, corresponding to a commensurate (√7×√7) structure. Using scanning tunneling microscopy and spectroscopy, we unraveled the structural and electronic properties of this configuration, revealing a moiré-modulated band gap and a well-defined edge state. This band gap opens at AB/BA stacked sites and closes at AA stacked sites, a phenomenon attributed to the electric field induced by the scanning tunneling microscopy tip. Our study further revealed two van Hove singularities at −0.8 eV and +1.04 eV, resulting in a Fermi velocity of (8 ± 1) × 105 m s−1. Our tight-binding results uncover a unique quantum state, where the topological properties could be regulated through an electric field, potentially triggering two topological phase transitions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.