Abstract

The moiré lattice has recently attracted broad interest in both solid-state physics and photonics where exotic phenomena in manipulating the quantum states are explored. In this work, we study the one-dimensional (1D) analogs of "moiré" lattices in a synthetic frequency dimension constructed by coupling two resonantly modulated ring resonators with different lengths. Unique features associated with the flatband manipulation as well as the flexible control of localization position inside each unit cell in the frequency dimension have been found, which can be controlled via the choice of flatband. Our work therefore provides insight into simulating moiré physics in 1D synthetic frequency space, which holds important promise for potential applications toward optical information processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call