Abstract

We study the electronic structure and correlated phases of twisted bilayers of platinum diselenide using large-scale ab initio simulations combined with the functional renormalization group. PtSe2 is a group-X transition metal dichalcogenide, which hosts emergent flat bands at small twist angles in the twisted bilayer. Remarkably, we find that Moiré engineering can be used to tune the strength of Rashba spin–orbit interactions, altering the electronic behavior in a novel manner. We reveal that an effective triangular lattice with a twist-controlled ratio between kinetic and spin–orbit coupling (SOC) scales can be realized. Even dominant SOC can be accessed in this way and we discuss consequences for the interaction driven phase diagram, which features pronounced exotic superconducting and entangled spin-charge density waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.