Abstract

We investigated the band renormalization caused by the compressive-strain-induced lattice mismatch in parallel AA stacked bilayer graphene using two complementary methods: the tight-binding approach and the low-energy continuum theory. While a large mismatch does not alter the low-energy bands, a small one reduces the bandwidth of the low-energy bands along with a decrease in the Fermi velocity. In the tiny-mismatch regime, the low-energy continuum theory reveals that the long-period moiré pattern extensively renormalizes the low-energy bands, resulting in a significant reduction of bandwidth. Meanwhile, the Fermi velocity exhibits an oscillatory behavior and approaches zero at specific mismatches. However, the resulting low-energy bands are not perfectly isolated flat, as seen in twisted bilayer graphene at magic angles. These findings provide a deeper understanding of moiré physics and offer valuable guidance for related experimental studies in creating moiré superlattices using two-dimensional van der Waals heterostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call