Abstract

Nearly aligned graphene on hexagonal boron nitride (G/BN) can be accurately modeled by a Dirac Hamiltonian perturbed by smoothly varying moir\'e pattern pseudospin fields. Here, we present the moir\'e-band model of G/BN for arbitrary small twist angles under a framework that combines symmetry considerations with input from ab-initio calculations. Our analysis of the band gaps at the primary and secondary Dirac points highlights the role of inversion symmetry breaking contributions of the moir\'e patterns, leading to primary Dirac point gaps when the moir\'e strains give rise to a finite average mass, and to secondary gaps when the moir\'e pseudospin components are mixed appropriately. The pseudomagnetic strain fields which can reach values of up to $\sim$40 Tesla near symmetry points in the moir\'e cell stem almost entirely from virtual hopping and dominate over the contributions arising from bond length distortions due to the moir\'e strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.