Abstract
To improve the numerical efficiency, the Fast Fourier Transform (FFT) technique was facilitated in Parker–Oldenburg’s method for a regional gravimetric Moho recovery, which assumes the Earth’s planar approximation. In this study, we extend this definition for global applications while assuming a spherical approximation of the Earth. In particular, we utilize the FFT technique for a global Moho recovery, which is practically realized in two numerical steps. The gravimetric forward modeling is first applied, based on methods for a spherical harmonic analysis and synthesis of the global gravity and lithospheric structure models, to compute the refined gravity field, which comprises mainly the gravitational signature of the Moho geometry. The gravimetric inverse problem is then solved iteratively in order to determine the Moho depth. The application of FFT technique to both numerical steps reduces the computation time to a fraction of that required without applying this fast algorithm. The developed numerical producers are used to estimate the Moho depth globally, and the gravimetric result is validated using the global (CRUST1.0) and regional (ESC) seismic Moho models. The comparison reveals a relatively good agreement between the gravimetric and seismic models, with the RMS of differences (of 4–5 km) at the level of expected uncertainties of used input datasets, while without the presence of significant systematic bias.
Full Text
Topics from this Paper
Fast Fourier Transform Technique
Seismic Models
Gravimetric Forward Modeling
Gravimetric Inverse Problem
Parker Oldenburg
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Communications in Computational Physics
Apr 1, 2016
Geo-spatial Information Science
Oct 1, 1998
Oct 1, 2019
Dec 1, 2018
Jun 1, 2016
IOP Conference Series: Materials Science and Engineering
Oct 1, 2017
Dec 1, 2019
Journal of Applied Geodesy
Jan 1, 2014
KSII Transactions on Internet and Information Systems
Jan 31, 2015
Pure and Applied Geophysics
Dec 3, 2013
Sep 22, 1992
Geophysical Prospecting
Feb 14, 2006
Pure and Applied Geophysics
Pure and Applied Geophysics
Nov 25, 2023
Pure and Applied Geophysics
Nov 25, 2023
Pure and Applied Geophysics
Nov 24, 2023
Pure and Applied Geophysics
Nov 24, 2023
Pure and Applied Geophysics
Nov 23, 2023
Pure and Applied Geophysics
Nov 23, 2023
Pure and Applied Geophysics
Nov 22, 2023
Pure and Applied Geophysics
Nov 21, 2023
Pure and Applied Geophysics
Nov 21, 2023
Pure and Applied Geophysics
Nov 20, 2023