Abstract
Selenide-based functional composites materials demonstrated tunable dielectric properties and heterogeneous interface design, which has been widely studied in electromagnetic (EM) wave absorption field. Herein, Metal-organic frameworks (MOFs) derived carbon coating copper selenide (Cu2-XSe@C) composites were successfully fabricated by using the Cu-MOFs as precursor. After reacting with the gaseous Se in the selenization annealing process, the metal host was converted into the Cu2-XSe nanoparticles, where embodied in the carbon matrix transformed from the organic linker. Based on the tunning dielectric property and building heterogeneous interface, MOFs-derived Cu2-XSe@C composites displayed outstanding EM wave absorption performance. Though the conduction loss, interfacial and dipole polarization behaviors, the minimum reflection loss (RLmin) value of Cu2-XSe@C-600 composites reached to −74.3 dB at 11.7 GHz when the thickness is 2.0 mm. The efficient absorption bandwidth (EAB) can be regulated via controlling the applied thickness. When the thickness is 2.3 mm, above-mentioned Cu2-XSe@C-600 got the broadest absorption performance with the EAB of 5.5 GHz from the 7.7–13.2 GHz, covering the whole X-band. Therefore, MOFs-derived selenide-based composites shed a new design strategy for constructing broadband EM wave absorption, especially in radar stealth applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.