Abstract

Magnesium hydride (MgH2) is an important material for hydrogen (H2) storage and transportation owing to its high capacity and reversibility. However, its intrinsic properties have considerably limited its industrial application. In this study, the NiFe-800 catalyst as metal-organic framework (MOF) derivative was first utilized to promote the intrinsic properties of MgH2. Compared to pure MgH2, which releases 1.24 wt% H2 in 60 min at 275 °C, the MgH2-10 NiFe-800 composite releases 5.85 wt% H2 in the same time. Even at a lower temperature of 250 °C, the MgH2-10 NiFe-800 composite releases 3.57 wt% H2, surpassing the performance of pure MgH2 at 275 °C. Correspondingly, while pure MgH2 absorbs 2.08 wt% H2 in 60 min at 125 °C, the MgH2-10 NiFe-800 composite absorbs 5.35 wt% H2 in just 1 min. Remarkably, the MgH2-10 NiFe-800 composite absorbs 2.27 wt% H2 in 60 min at 50 °C and 4.64 wt% H2 at 75 °C. This indicates that MgH2-10 NiFe-800 exhibits optimum performance with excellent kinetics at low temperatures. Furthermore, the capacity of the MgH2-10 NiFe-800 composite remains largely stable after 10 cycles. Moreover, the Mg2Ni/Mg2NiH4 acts as a “hydrogen pump”, providing effective diffusion channels that enhance the kinetic process of the composite during cycling. Additionally, Fe0 facilitates electron transfer and creates hydrogen diffusion channels and catalytic sites. Finally, carbon (C) effectively prevents particle agglomeration and maintains the cyclic stability of the composites. Consequently, the synergistic effects of Mg2Ni/Mg2NiH4, Fe0, and C considerably improve the kinetic properties and cycling stability of MgH2. This work offers an effective and valuable approach to improving the hydrogen storage efficiency in the commercial application of MgH2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.