Abstract

Designing rational nanostructures of metal-organic frameworks to speed up the methanol oxidation reaction and promote their application in methanol oxidation is highly desired but still remains a great challenge. In this study, we report a novel N-doped carbon coated CoP nanoparticles/carbon nanotube Pt-based catalyst (Pt–CoP-NCZ/CNT). This composite is produced through in situ growth of CoZn-ZIF on carbon nanotubes, subsequent carbonization and phosphorization treatment and microwave-assisted Pt supporting synthesis. The high specific surface area and N-doped structure endow the prepared catalysts with ideal conditions for supporting of Pt as well as good electrical conductivity. In addition, the evaporation of Zn2+ in CoZn-ZIF not only makes a contribution to a higher specific surface area of the material but also is favorable for uniform distribution of CoP nanoparticles, which gives CoP nanoparticles an excellent co-catalysis effect. Thus, the composite exhibits wonderful mass activity in both acid (930 mA mg−1) and alkaline (3622.5 mA mg−1) environments. Furthermore, the Pt–CoP-NCZ/CNT catalyst also shows better CO tolerance and long-time stability compared with other catalysts in this study. Thereby, the fabrication of the composite catalyst makes wider application of metal-organic frameworks in methanol oxidation possible and provides inspiration for designing efficient catalysts for methanol oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.