Abstract
The design and synthesis of nanostructured ZnO with high chemical sensing properties, especially towards ppb or sub-ppm level VOC gases is still highly desired and challengeable. Herein, the hierarchical hollow ZnO nanocages were synthesized by a facile strategy through the simple and direct pyrolysis of Zn-based metal-organic framework. The as-synthesized hollow ZnO products present the typical hierarchical structures with hollow interiors enveloped by interpenetrated ZnO nanoparticles as porous shell, providing structurally combined meso-/macro-porous channels for facilitating the diffusion and surface reaction of gas molecules. The gas-sensing experiments demonstrate that, in contrast with singular ZnO nanoparticles, the ZnO nanocages show significantly enhanced chemical sensing sensitivity and selectivity towards low-concentration volatile organic compounds, typically, acetone and benzene. Furthermore, the ZnO hollow nanocages perform sub-ppm level sensitivity with 2.3ppm−1 towards 0.1ppm benzene, and ppb level sensitivity with 15.3ppm−1 towards 50ppb acetone, respectively. The enhanced sensing performance of the MOF-derived ZnO nanocages is ascribed to the unique hierarchical structure with high specific surface area and abundant exposed active sites with surface-adsorbed oxygen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.