Abstract

In this work, a MOF-derived Co-Fe oxide porous nanorod is introduced into the freestanding MXene film to produce a high-performance flexible electrode with excellent deformability and editability. The as-prepared composite film electrode demonstrates several advantages: MXene layer functions as a binder and conductive additive to coat Co-Fe oxide, which can effectively facilitate charge transfer and maintain the excellent flexibility of the film electrode. In the meantime, Co-Fe oxide can work as a spacer, thereby expanding the interlayer distance, improving the ion transmission path in the electrode. As a result, the optimal Co-Fe oxide/Ti3C2TX composite paper manifests a remarkable volumetric capacitance of 2467.6 F cm−3 in 1 M LiCl electrolyte. When assembled into a flexible symmetrical supercapacitor, an outstanding specific areal capacitance of 356.4 mF cm−2 can be obtained. Meanwhile, the flexible supercapacitor demonstrates excellent cycling performance with a high capacitance retention of 88.2% after 10 000 charge/discharge cycles, as well as stable electrochemical energy storage stability after 100 cycles of mechanical bending, indicating its great application potential in future flexible and portable energy storage equipment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.