Abstract

The low thermal conductivity of the prototype hydrogen storage adsorbent, metal-organic framework 5 (MOF-5), can limit performance in applications requiring rapid gas uptake and release, such as in hydrogen storage for fuel cell vehicles. As a means to improve thermal conductivity, we have synthesized MOF-5-based composites containing 1–10 wt.% of expanded natural graphite (ENG) and evaluated their properties. Cylindrical pellets of neat MOF-5 and MOF-5/ENG composites with densities of 0.3, 0.5, and 0.7 g/cm3 are prepared and assessed with regard to thermal conductivity, specific heat capacity, surface area, and crystallinity. For pellets of density ∼0.5 g/cm3, we find that ENG additions of 10 wt.% result in a factor of five improvement in thermal conductivity relative to neat MOF-5, increasing from 0.10 to 0.56 W/mK at room temperature. Based on the relatively higher densities, surface areas, and enhanced crystallinity exhibited by the composites, ENG additions appear to partially protect MOF-5 crystallites from plastic deformation and/or amorphization during mechanical compaction; this suggests that thermal conductivity can be improved while maintaining the favorable hydrogen storage properties of this material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call