Abstract

Single-atom cobalt-based CoNC are promising low-cost electrocatalysts for oxygen reduction reaction (ORR). However, further increasing the single cobalt-based active sites and the ORR activity remain a major challenge. Herein, an acetate (OAc) assisted metal-organic framework (MOF) structure-engineering strategy is developed to synthesize hierarchical accordion-like MOF with higher loading amount and better spatial isolation of Co and much higher yield when compared with widely reported polyhedron MOF. After pyrolysis, the accordion-structured CoNC (CoNC (A)) is loaded with denser CoN4 active sites (Co: 2.88wt%), approximately twice that of Co in the CoNC reported. The presence of OAc in MOF also induces the generation of big pores (5-50nm) for improving the accessibility of active sites and mass transfer during catalytic reactions. Consequently, the CoNC (A) catalyst shows an admirable ORR activity with a E1/2 of 0.89V (40mV better than Pt/C) in alkaline electrolytes, outstanding durability, and absolute tolerance to methanol in both alkaline and acidic media. The CoNC-based Zn-air battery exhibits a high specific capacity (976 mAh g-1 Zn ),power density (158mW cm-2 ), rate capability, and long-term stability. This work demonstrates a reliable approach to construct single atom doped carbon catalysts with denser accessible active sites through MOF structure engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.