Abstract

Metal-organic frameworks (MOFs) present specific adsorption sites with varying electron affinity which are uniquely conducive to selective gas sensing but are typically large-band-gap insulators. On the contrary, multiwall carbon nanotubes (MWCNTs) exhibit superior mesoscopic transport exploiting strong electron correlations among sub-bands below and above the Fermi level at room temperature. We synergize them in a new class of nanocomposites based on zeolitic imidazolate framework-8 (ZIF-8) and report selective sensing of CH4 in ∼10 parts-per-billion (ppb) with a determined limit of detection of ∼0.22 ppb, hitherto unprecedented. The observed selectivity to CH4 over non-polar CO2, polar volatile organic compounds, and moisture has roots in competing electron-sharing mechanisms at its different adsorption sites. This important result provides a significant reference to guide future MOF-related composite research to achieve the best sensing performance. On molecular adsorption, MWCNTs facilitate electrical transport via manipulating the ZIF-8 band gap to show a p-type semiconductor behavior with lower activation energy to induce a measurable resistance change. Excellent repeatability and reversibility are shown. A carbon-engineered MOF composite has the potential to actuate similar selective response to low reactive gases via carrier manipulation in the energy band gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.