Abstract
The accurate discernment and separation of chiral isomers with high precision remain a significant challenge in various industries and biological fields. In this investigation, an electrochemiluminescent (ECL) chiral recognition platform was devised to ascertain the presence of phenylalanine (Phe). Notably, a homochiral [Ni2(l-asp)2(bipy)] (Ni-LAB) was established as a dual-function coreactant accelerator and chiral recognition substrate. Ni-LAB facilitates the reaction between the coreactant (K2S2O8) and the luminescent entity 3,4,9,10-perylenetetracar-boxylic-l-cysteine (PTCA-cys), thereby enhancing the ECL luminescence efficiency and improving the sensitivity of the chiral sensor. The chiral recognition potential of Ni-LAB was assessed to differentiate between Phe chiral isomers, and the underlying mechanism was comprehensively elucidated. This system exhibited remarkable proficiency in detecting Phe enantiomers and precisely differentiating a single Phe enantiomer within a mixture, showcasing exceptional levels of selectivity, stability, and reproducibility. This study paves the way for the development of advanced chiral recognition systems, potentially revolutionizing the field of chiral sensing and discrimination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.