Abstract
Composites featuring negative permittivity have garnered significant attention for their potential in novel capacitance designs, coil-less electrical inductors, and electromagnetic shielding applications. In this study, we prepared polyvinylidene fluoride (PVDF) matrix composites filled with ZrO2/C nanoparticles derived from metal-organic frameworks (MOFs) via a hot-pressing method. With an increase in the ZrO2/C content to 30 wt.%, electrical percolation was observed, accompanied by a transition mechanism from hopping conduction to metal-like conduction. This enabled the realization of ZrO2/C/PVDF composites with tailorable negative permittivity properties, attributed to the plasmonic oscillation of free electrons in the composites beyond the percolation threshold (30 wt.%). Furthermore, the permittivity transition along to a shift in the electrical behavior of the percolative composites from capacitive to inductive. We explored the regulatory mechanism behind the negative permittivity in this random composite system, and our findings highlight the potential of these tunable negative permittivity media as promising candidates for diverse electromagnetic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.